3.23 \(\int \frac{(2+3 x^2) (5+x^4)^{3/2}}{x} \, dx\)

Optimal. Leaf size=78 \[ \frac{1}{24} \left (9 x^2+8\right ) \left (x^4+5\right )^{3/2}+\frac{5}{16} \left (9 x^2+16\right ) \sqrt{x^4+5}+\frac{225}{16} \sinh ^{-1}\left (\frac{x^2}{\sqrt{5}}\right )-5 \sqrt{5} \tanh ^{-1}\left (\frac{\sqrt{x^4+5}}{\sqrt{5}}\right ) \]

[Out]

(5*(16 + 9*x^2)*Sqrt[5 + x^4])/16 + ((8 + 9*x^2)*(5 + x^4)^(3/2))/24 + (225*ArcSinh[x^2/Sqrt[5]])/16 - 5*Sqrt[
5]*ArcTanh[Sqrt[5 + x^4]/Sqrt[5]]

________________________________________________________________________________________

Rubi [A]  time = 0.0746282, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.35, Rules used = {1252, 815, 844, 215, 266, 63, 207} \[ \frac{1}{24} \left (9 x^2+8\right ) \left (x^4+5\right )^{3/2}+\frac{5}{16} \left (9 x^2+16\right ) \sqrt{x^4+5}+\frac{225}{16} \sinh ^{-1}\left (\frac{x^2}{\sqrt{5}}\right )-5 \sqrt{5} \tanh ^{-1}\left (\frac{\sqrt{x^4+5}}{\sqrt{5}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x^2)*(5 + x^4)^(3/2))/x,x]

[Out]

(5*(16 + 9*x^2)*Sqrt[5 + x^4])/16 + ((8 + 9*x^2)*(5 + x^4)^(3/2))/24 + (225*ArcSinh[x^2/Sqrt[5]])/16 - 5*Sqrt[
5]*ArcTanh[Sqrt[5 + x^4]/Sqrt[5]]

Rule 1252

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 815

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x)^(
m + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*(a + c*x^2)^p)/(c*e^2*(m + 2*p + 1)*(m
+ 2*p + 2)), x] + Dist[(2*p)/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 844

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\left (2+3 x^2\right ) \left (5+x^4\right )^{3/2}}{x} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(2+3 x) \left (5+x^2\right )^{3/2}}{x} \, dx,x,x^2\right )\\ &=\frac{1}{24} \left (8+9 x^2\right ) \left (5+x^4\right )^{3/2}+\frac{1}{8} \operatorname{Subst}\left (\int \frac{(40+45 x) \sqrt{5+x^2}}{x} \, dx,x,x^2\right )\\ &=\frac{5}{16} \left (16+9 x^2\right ) \sqrt{5+x^4}+\frac{1}{24} \left (8+9 x^2\right ) \left (5+x^4\right )^{3/2}+\frac{1}{16} \operatorname{Subst}\left (\int \frac{400+225 x}{x \sqrt{5+x^2}} \, dx,x,x^2\right )\\ &=\frac{5}{16} \left (16+9 x^2\right ) \sqrt{5+x^4}+\frac{1}{24} \left (8+9 x^2\right ) \left (5+x^4\right )^{3/2}+\frac{225}{16} \operatorname{Subst}\left (\int \frac{1}{\sqrt{5+x^2}} \, dx,x,x^2\right )+25 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{5+x^2}} \, dx,x,x^2\right )\\ &=\frac{5}{16} \left (16+9 x^2\right ) \sqrt{5+x^4}+\frac{1}{24} \left (8+9 x^2\right ) \left (5+x^4\right )^{3/2}+\frac{225}{16} \sinh ^{-1}\left (\frac{x^2}{\sqrt{5}}\right )+\frac{25}{2} \operatorname{Subst}\left (\int \frac{1}{x \sqrt{5+x}} \, dx,x,x^4\right )\\ &=\frac{5}{16} \left (16+9 x^2\right ) \sqrt{5+x^4}+\frac{1}{24} \left (8+9 x^2\right ) \left (5+x^4\right )^{3/2}+\frac{225}{16} \sinh ^{-1}\left (\frac{x^2}{\sqrt{5}}\right )+25 \operatorname{Subst}\left (\int \frac{1}{-5+x^2} \, dx,x,\sqrt{5+x^4}\right )\\ &=\frac{5}{16} \left (16+9 x^2\right ) \sqrt{5+x^4}+\frac{1}{24} \left (8+9 x^2\right ) \left (5+x^4\right )^{3/2}+\frac{225}{16} \sinh ^{-1}\left (\frac{x^2}{\sqrt{5}}\right )-5 \sqrt{5} \tanh ^{-1}\left (\frac{\sqrt{5+x^4}}{\sqrt{5}}\right )\\ \end{align*}

Mathematica [A]  time = 0.0452563, size = 67, normalized size = 0.86 \[ \frac{1}{48} \left (\sqrt{x^4+5} \left (18 x^6+16 x^4+225 x^2+320\right )+675 \sinh ^{-1}\left (\frac{x^2}{\sqrt{5}}\right )-240 \sqrt{5} \tanh ^{-1}\left (\frac{\sqrt{x^4+5}}{\sqrt{5}}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x^2)*(5 + x^4)^(3/2))/x,x]

[Out]

(Sqrt[5 + x^4]*(320 + 225*x^2 + 16*x^4 + 18*x^6) + 675*ArcSinh[x^2/Sqrt[5]] - 240*Sqrt[5]*ArcTanh[Sqrt[5 + x^4
]/Sqrt[5]])/48

________________________________________________________________________________________

Maple [A]  time = 0.016, size = 75, normalized size = 1. \begin{align*}{\frac{3\,{x}^{6}}{8}\sqrt{{x}^{4}+5}}+{\frac{75\,{x}^{2}}{16}\sqrt{{x}^{4}+5}}+{\frac{225}{16}{\it Arcsinh} \left ({\frac{{x}^{2}\sqrt{5}}{5}} \right ) }+{\frac{{x}^{4}}{3}\sqrt{{x}^{4}+5}}+{\frac{20}{3}\sqrt{{x}^{4}+5}}-5\,\sqrt{5}{\it Artanh} \left ({\frac{\sqrt{5}}{\sqrt{{x}^{4}+5}}} \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((3*x^2+2)*(x^4+5)^(3/2)/x,x)

[Out]

3/8*x^6*(x^4+5)^(1/2)+75/16*x^2*(x^4+5)^(1/2)+225/16*arcsinh(1/5*x^2*5^(1/2))+1/3*x^4*(x^4+5)^(1/2)+20/3*(x^4+
5)^(1/2)-5*5^(1/2)*arctanh(5^(1/2)/(x^4+5)^(1/2))

________________________________________________________________________________________

Maxima [B]  time = 1.43695, size = 186, normalized size = 2.38 \begin{align*} \frac{1}{3} \,{\left (x^{4} + 5\right )}^{\frac{3}{2}} + \frac{5}{2} \, \sqrt{5} \log \left (-\frac{\sqrt{5} - \sqrt{x^{4} + 5}}{\sqrt{5} + \sqrt{x^{4} + 5}}\right ) + 5 \, \sqrt{x^{4} + 5} + \frac{75 \,{\left (\frac{3 \, \sqrt{x^{4} + 5}}{x^{2}} - \frac{5 \,{\left (x^{4} + 5\right )}^{\frac{3}{2}}}{x^{6}}\right )}}{16 \,{\left (\frac{2 \,{\left (x^{4} + 5\right )}}{x^{4}} - \frac{{\left (x^{4} + 5\right )}^{2}}{x^{8}} - 1\right )}} + \frac{225}{32} \, \log \left (\frac{\sqrt{x^{4} + 5}}{x^{2}} + 1\right ) - \frac{225}{32} \, \log \left (\frac{\sqrt{x^{4} + 5}}{x^{2}} - 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5)^(3/2)/x,x, algorithm="maxima")

[Out]

1/3*(x^4 + 5)^(3/2) + 5/2*sqrt(5)*log(-(sqrt(5) - sqrt(x^4 + 5))/(sqrt(5) + sqrt(x^4 + 5))) + 5*sqrt(x^4 + 5)
+ 75/16*(3*sqrt(x^4 + 5)/x^2 - 5*(x^4 + 5)^(3/2)/x^6)/(2*(x^4 + 5)/x^4 - (x^4 + 5)^2/x^8 - 1) + 225/32*log(sqr
t(x^4 + 5)/x^2 + 1) - 225/32*log(sqrt(x^4 + 5)/x^2 - 1)

________________________________________________________________________________________

Fricas [A]  time = 1.54698, size = 185, normalized size = 2.37 \begin{align*} \frac{1}{48} \,{\left (18 \, x^{6} + 16 \, x^{4} + 225 \, x^{2} + 320\right )} \sqrt{x^{4} + 5} + 5 \, \sqrt{5} \log \left (-\frac{\sqrt{5} - \sqrt{x^{4} + 5}}{x^{2}}\right ) - \frac{225}{16} \, \log \left (-x^{2} + \sqrt{x^{4} + 5}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5)^(3/2)/x,x, algorithm="fricas")

[Out]

1/48*(18*x^6 + 16*x^4 + 225*x^2 + 320)*sqrt(x^4 + 5) + 5*sqrt(5)*log(-(sqrt(5) - sqrt(x^4 + 5))/x^2) - 225/16*
log(-x^2 + sqrt(x^4 + 5))

________________________________________________________________________________________

Sympy [A]  time = 25.6382, size = 114, normalized size = 1.46 \begin{align*} \frac{3 x^{10}}{8 \sqrt{x^{4} + 5}} + \frac{105 x^{6}}{16 \sqrt{x^{4} + 5}} + \frac{375 x^{2}}{16 \sqrt{x^{4} + 5}} + \frac{\left (x^{4} + 5\right )^{\frac{3}{2}}}{3} + 5 \sqrt{x^{4} + 5} + \frac{5 \sqrt{5} \log{\left (x^{4} \right )}}{2} - 5 \sqrt{5} \log{\left (\sqrt{\frac{x^{4}}{5} + 1} + 1 \right )} + \frac{225 \operatorname{asinh}{\left (\frac{\sqrt{5} x^{2}}{5} \right )}}{16} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x**2+2)*(x**4+5)**(3/2)/x,x)

[Out]

3*x**10/(8*sqrt(x**4 + 5)) + 105*x**6/(16*sqrt(x**4 + 5)) + 375*x**2/(16*sqrt(x**4 + 5)) + (x**4 + 5)**(3/2)/3
 + 5*sqrt(x**4 + 5) + 5*sqrt(5)*log(x**4)/2 - 5*sqrt(5)*log(sqrt(x**4/5 + 1) + 1) + 225*asinh(sqrt(5)*x**2/5)/
16

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (x^{4} + 5\right )}^{\frac{3}{2}}{\left (3 \, x^{2} + 2\right )}}{x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((3*x^2+2)*(x^4+5)^(3/2)/x,x, algorithm="giac")

[Out]

integrate((x^4 + 5)^(3/2)*(3*x^2 + 2)/x, x)